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OBJECTIVE

To develop a more fundamental understanding of the causes and modifications of limit cycle
oscillations and other dynamic and control phenomena arising from nonlinear effects in
aeroelastic systems. A combined experimental-theoretical study was pursued to validate and
improve our physical understanding and mathematical models for design and analysis to
enable flight of aircraft safely and reliably beyond the conventional and traditional flutter
boundary.

RELATIONSHIP AND IMPORTANCE TO AFOSR

Some current Air Force flight vehicles are known to undergo limit cycle oscillations (LCO)
due to as yet undetermined nonlinearites. If the source of these nonlinearities can be
identified and accurately modeled mathematically, then such effects can be predicted and
exploited in the design phase of new aircraft and/or modified existing aircraft. More
specifically we know empirically through flight experience that some LCO can be tolerated
without compromising mission performance while other LCO cannot. By developing an
improved understanding and predictive capability for LCO, then it may be possible to design
aircraft to operate safely and reliably beyond the conventional linear flutter boundary. This
will lead to enhanced mission capability as well as increased flight safety.

BASIC RESEARCH ISSUES

The likely aerodynamic and structural nonlinear mechanisms are several. For the flow field,
viscous effects leading to separation and/or compressible effects leading to shock waves may
create a nonlinear relationship between the structural motion and the fluid response, e.g. the
pressure acting on a wing or panel. Structural nonlinearities of interest include freeplay in
the attachments between airframe elements, e.g. the control surface and the wing. Freeplay



leads to a bi-linear stiffness, i.e. a very low stiffness for small amplitude motions and a much

larger, nominal stiffness (the ideal stiffness without freeplay) at larger amplitudes. Also the

wing itself may have geometric nonlinearities arising from coupling between in-plane and
out-of-plane structural motion. This coupling creates a nonlinear tension stiffening induced

by in-plane stretching of the wing as a consequence of wing bending.

Until recently none of these nonlinear mechanisms has been subject to a systematic
theoretical/experimental investigation to assess the importance of each of the several

nonlinearities and our ability to model them accurately. Such a study was conducted with
the support of the present grant.

APPROACH AND STATUS OF EFFORT

The focus of the present grant has been on structural nonlinearities as they affect the total
aeroelastic system behavior, rather than studying aerodynamic nonlinearities. This is for two
reasons. One is that aerodynamic nonlinearities are being addressed in a companion grant
and the other is that the structure is a more likely candidate for making design choices to
create desirable nonlinear effects and to avoid undesirable ones.

In the first phase of our work we have examined a prototypical model of an airfoil with a
control surface attached. The attachment has a nominal linear spring stiffness behavior, but
also incorporates a freeplay nonlinearity. An experimental model was built and tested in the
Duke wind tunnel and the experimental results for LCO were correlated with those of a
mathematical model that included the structural nonlinearity and a linear aerodynamic
model. The correlation was very good for LCO response including amplitude and frequency
of the motion. A transition from one type of LCO to another was predicted theoretically and
observed experimentally. More recent work has shown the effectiveness of various control
approaches in modifying or eliminating LCO and also investigated more deeply the nature
of the several types of LCO that may occur and the transition from one to another.

In Figure 1 a sketch of the airfoil with freeplay is shown and a typical correlation of theory
and experiment for LCO response as a function of flow velocity is presented in Figure 2.

Another prototypical model used in the grant work has been a low aspect ratio delta wing
that has been constructed for experimental study. This wing model is of constant thickness
and has the structural behavior of a plate (as distinct from a beam/rod). The structural
nonlinearity is the tension induced by bending discussed above. Again theoretical/
experimental correlation has been good. Our most recent results are for the delta wing
placed at a steady angle of attack. The steady angle of attack gives rise to a steady loading
on the wing that deforms the wing statically, thereby changing the effective linear stiffness
as well as the nonlinear stiffness of the wing structure. Two significant theoretical
predictions have been made. On the one hand, the flow velocity for the onset of the LCO
(i.e. the flutter speed) is reduced by increasing the angle of attack, but on the other, the
amplitude of the LCO is also reduced. So there is both a positive and a negative impact of
a non-zero angle of attack. We plan to investigate these interesting and important
predictions experimentally in future wind tunnel tests. Also future tests will examine the



effects of various control methods and investigate the nature of the LCO in more depth, for
example changes of flutter mode shape with airspeed.

In Figure 3 a sketch of the delta wing model is shown and a typical correlation of experiment
and theory for LCO response as a function of flow velocity (for zero angle of attack) is
presented in Figure 4.

As another phase of our work we are considering the effects of gust loading on both the
airfoil and wing models. For linear systems the effects of flutter and gust response may be
considered separately, bui for nonlinear systems there is a nonlinear interaction between gust
excitation and LCO and thus simple linear superposition no longer applies.

SIGNIFICANT RESULTS AND ACCOMPLISHMENTS

A deeper understanding of two prototypical structural nonlinearities on LCO has been
obtained. This suggests that reliable and practical analysis and design methods can be
developed, not only for the relatively simple models investigated here which contain the
fundamental physics for such nonlinearities, but also for the more complex structures
encountered in flight vehicles.

Specifically, it has been shown experimentally and theoretically that aeroelastic systems may
be operated safely beyond the onset of LCO and their responses predicted accurately and
reliably for the nonlinearities investigated here.
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